Expression of members of the multidrug resistance protein family in human term placenta.

نویسندگان

  • M V St-Pierre
  • M A Serrano
  • R I Macias
  • U Dubs
  • M Hoechli
  • U Lauper
  • P J Meier
  • J J Marin
چکیده

The placenta serves, in part, as a barrier to exclude noxious substances from the fetus. In humans, a single-layered syncytium of polarized trophoblast cells and the fetal capillary endothelium separate the maternal and fetal circulations. P-glycoprotein is present in the syncytiotrophoblast throughout gestation, consistent with a protective role that limits exposure of the fetus to hydrophobic and cationic xenobiotics. We have examined whether members of the multidrug resistance protein (MRP) family are expressed in term placenta. After screening a placenta cDNA library, partial clones of MRP1, MRP2, and MRP3 were identified. Immunofluorescence and immunoblotting studies demonstrated that MRP2 was localized to the apical syncytiotrophoblast membrane. MRP1 and MRP3 were predominantly expressed in blood vessel endothelia with some evidence for expression in the apical syncytiotrophoblast. ATP-dependent transport of the anionic substrates dinitrophenyl-glutathione and estradiol-17-beta-glucuronide was also demonstrated in apical syncytiotrophoblast membranes. Given the cellular distribution of these transporters, we hypothesize that MRP isoforms serve to protect fetal blood from entry of organic anions and to promote the excretion of glutathione/glucuronide metabolites in the maternal circulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNAi Induced Inhibition of MRP1 Expression and Reversal of Drug Resistance in Human Promyelocytic HL60 Cell Line

Multidrug resistance (MDR) is a complex phenomenon in which many different genes regulating drug transport, cellular repair, detoxification and drug metabolism are involved. Nevertheless, in most drug resistant cell lines and cancer patients up-regulation of ABC-transporter genes such as MDR associated Protein (MRP1) gene could be at the basis of the drug resistance phenotype. We aimed to decre...

متن کامل

Celecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines

Elevated expression of the drug efflux transporter ABCG2 seems to correlate with multidrug resistance of cancer cells. Specific COX-2 inhibitor celecoxib has been shown to enhance the sensitivity of cancer cells to anticancer drugs. To clarify whether ABCG2 inhibition is involved in the sensitizing effect of celecoxib, we investigated whether the expression of ABCG2 in breast cancer cell lines ...

متن کامل

Celecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines

Elevated expression of the drug efflux transporter ABCG2 seems to correlate with multidrug resistance of cancer cells. Specific COX-2 inhibitor celecoxib has been shown to enhance the sensitivity of cancer cells to anticancer drugs. To clarify whether ABCG2 inhibition is involved in the sensitizing effect of celecoxib, we investigated whether the expression of ABCG2 in breast cancer cell lines ...

متن کامل

Differential protein expression in Mycobacterium tuberculosis susceptible and multidrug resistant isolates

Introduction: Infections by multidrug resistant Mycobacterium tuberculosis (MDR-TB) is a major public health challenge. Secretion of proteins by M. tuberculosis plays an important role in the pathogenesis of the bacterium. We compared the protein profiles of susceptible M. tuberculosis and MDR-TB isolates using proteomic analyses, namely two dimensional gel electrophoresis (2DE) and mass spectr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 279 4  شماره 

صفحات  -

تاریخ انتشار 2000